Bloom of the potentially toxic cyanobacterium P. rubescens: seasonal distribution and possible drivers of its proliferation in the Vrutci reservoir (Serbia)

Ana Blagojević Ponjavić, Dušan Kostić, Prvoslav Marjanović, Ivana Trbojević, Slađana Popović, Dragana Predojević, Gordana Subakov Simić

Paper category: Original research paper
Corresponding author: Ana Blagojević Ponjavić (blagojevicana88@gmail.com)
DOI: 10.2478/ohs-2019-0029
Received: 14/12/2018
Accepted: 08/04/2019
Full text: here

Citation (APA style): Ponjavić, A., Kostić, D., Marjanović, P., et al. (2019). Bloom of the potentially toxic cyanobacterium P. rubescens: seasonal distribution and possible drivers of its proliferation in the Vrutci reservoir (Serbia). Oceanological and Hydrobiological Studies, 48(4), pp. 316-327. Retrieved 10 Dec. 2019, from doi:10.2478/ohs-2019-0029

Abstract

Planktothrix rubescens is a filamentous cyanobacterium with a worldwide distribution in lakes and reservoirs of varying size and morphology. The objective of this study was to identify the population dynamics and the major drivers of P. rubescens blooms. Samples for qualitative and quantitative analysis of phytoplankton were collected every month in 2014 and 2015 from stationary depths, while the main physical parameters were measured in situ along the water column. Samples for chemical analysis were collected below the surface, at mid-depth (metalimnion) and near the bottom. In the periods of thermal stratification, P. rubescens formed the maximum biomass in the metalimnion, however, its volume-weighted biomass reached the maximum value in the winter mixing period (4.40 mm<sup>3</sup> l<sup>−1</sup>). Changes in the P. rubescens population in the reservoir were related to changes in the measured environmental parameters. Significant physical, hydrological, meteorological and chemical parameters were distinguished based on the multivariate analysis. The variable associated with water-level fluctuations showed the highest positive correlation with P. rubescens biomass. We conclude that it is necessary to establish water quality monitoring and prevent excessive water-level fluctuations to ensure a high quality of water supplies from the reservoir.

References

Amano, Y., Sakai, Y., Sekiya, T., Takeya, K., Taki, K. et al. (2010). Effect of phosphorus fluctuation caused by river water dilution in eutrophic lake on competition between blue-green alga Microcystis aeruginosa and diatom Cyclotella sp. J. Environ. Sci-China 22: 1666–1673. DOI: 10.1016/S1001-0742(09)60304-1.
Beniston, M., Stephenson, D.B., Christensen, O.B,, Ferro, C.A.T., Frei, C. et al. (2007). Future extreme events in European climate: an exploration of regional climate model projections. Clim. Change 81: 71–95. DOI: 10.1007/s10584–006–9226–z.
Blikstad Halstvedt, C., Rohrlack, T., Andersen, T., Skulberg, O. & Edvardsen, B. (2007). Seasonal dynamics and depth distribution of Planktothrix spp. in Lake Steinsfjorden (Norway) related to environmental factors. J. Plankton Res. 29: 471–482. DOI: 10.1093/plankt/fbm036.
Carmichael, W.W. (1992). Cyanobacteria secondary metabolites- the cyanotoxins. J. Appl. Microbiol. 72: 445–459. DOI: 10.1111/j.1365-2672.1992.tb01858.x.
Carvalho, L., Miller, C.A., Scott, E.M., Codd, G.A., Davies, P.S. et al. (2011). Cyanobacterial blooms: statistical models describing risk factors for national-scale lake assessment and lake management. Sci. Total Environ. 409: 5353–5358.
Chorus, I., Dokulil, M., Lammens, E., Manca, M., Naselli-Flores, L. et al. (2011). Restoration responses of 19 lakes: are TP thresholds common? In I. Chorus & I. Schauser (Eds.), Oligotrophication of Lake Tegel and Schlachtensee, Berlin Analysis of system components, causalities and response thresholds compared to responses of other waterbodies (pp. 84–102). Dessau-Roßlau, Germany: Federal Environment Agency (Umweltbundesamt).
Codd, G.A. (2000). Cyanobacterial toxins: occurrence, properties and biological significance. Wat. Sci. Tech. 32: 149–156.
Davis, P.A., Dent, M., Parker, J., Reynolds, S.C. & Walsby, E.A. (2003). The annual cycle of growth rate and biomass change in Planktothrix spp. in Blelham Tarn, English Lake District. Freshwater Biol. 48: 852–867.
Dokulil, T.M. & Teubner, K. (2012). Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698: 29–46. DOI: 10.1007/s10750-012-1020-5.
Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E. & Franson, M.A. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC, USA: American Public Health Association (APHA).
Elliott, A. (2010). The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biol. 16: 864–876. DOI: 10.1111/j.1365-2486.2009.01998.x.
Ernst, B., Hoeger, J.S., O’Brien, E. & Dietrich, R.D. (2009). Abundance and toxicity of Planktothrix rubescens in the pre-alpine Lake Ammersee, Germany. Harmful Algae 8: 329–342. DOI: 10.1016/j.hal.2008.07.006.
European Norms. (2006). Water quality – Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermoehl techique). 15204. Switzerland.
Falconer, I.R. (1999). An overview of problems caused by toxic bluegreen algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology 14: 5–12. DOI: 10.1002/(SICI)1522-7278(199902)14:13.0. CO;2-0.
Feuillade, J. (1994). The cyanobacterium (blue-green alga) Oscillatoria rubescens D.C. Archiv für Hydrobiologie–BeiheftErgebnisse der Limnologie. 41: 77–93.
Franson, M.A., Rand, M.C., Greenberg, A.E. & Taras, M.J. (Eds.) (1975). Standard methods for the examination of water and wastewater. 14th ed. Washington, DC, USA: American Public Health Association (APHA).
Hillebrand, H., Dürseln, C.D., Kirschtel, D., Pollingher, U. & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403–424. DOI: 10.1046/j.1529-8817.1999.3520403.x.
Huber-Pestalozzi, G., Komárek, J. & Fott, B. (1983). Band XVI, 7.Teil, 1. Hälfte. Chlorophyceae, Ordnung: Chlorococcales. In H.J. Elster & W. Ohle (Eds.), Das Phytoplankton des Süβwassers. Stuttgart: E. Schweizerbartsche Verlagsbuchhandung.
Izaguirre, G. & Taylor, W.D. (2004). A guide to geosmin- and MIB-producing cyanobacteria in the United States. Wat. Sci. Tech. 49: 19–24.
Jacquet, S., Kerimoglu, O., Rimet, F., Paolini, G. & Anneville, O. (2014). Cyanobacterial bloom termination: the disappearance of Planktothrix rubescens from Lake Bourget (France) after restoration. Freshwater Biology 59: 2472–2487. DOI: 10.1111/fwb.12444.
Jennings, E., Jones, S., Arvola, L., Staehr, P.A., Gaiser, E. et al. (2012). Effects of weather‐related episodic events in lakes: an analysis based on high‐frequency data. Freshwater Biology 57: 589–601. DOI: 10.1111/j.1365-2427.2011.02729.x.
John, D., Whitton, B. & Brook, A. (2002). The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae (1st ed). Cambridge: University Press.
Komárek, J. & Anagnostidis, K. (1998). Cyanoprokaryota, 1. Teil: Chroococcales. In H. Ettl, G. Gärtner, H. Heynig & D. Mollenhauer (Eds.). Süβwasserflora von Mitteleuropa. Heidelberg, Berlin: Spektrum Akademischer Verlag.
Komárek, J. & Anagnostidis, K. (2005). Cyanoprokaryota 2. Teil: Oscillatoriales. In B. Büdel, G. Gärtner, L. Krienitz & M. Schagerl (Eds.), Süβwasserflora von Mitteleuropa. Berlin: Spektrum Akademischer Verlag.
Komárek, J. (2013). Cyanoprokaryota 3. Teil: Heterocytous genera. In B. Büdel, G. Gärtner, L. Krienitz & M. Schagerl (Eds.). Süβwasserflora von Mitteleuropa. Berlin: Springer Spectrum Verlag.
Koreiviene, J., Anne, O., Kasperovičiene, J. & Burškyte, V. (2014). Cyanotoxin Management and Human Health Risk Mitigation in Recreational Waters. Environ. Monit. Assess. 186: 4443–4459. DOI: 10.1007/s10661-014-3710-0.
Kostić, D., Marijanović, P., Marijanović, M., Blagojević, A., Trbojević, I. et al. (2016). Drivers of Phytoplankton Blooms in the Vrutci Reservoir During 2014–2015 and Implications for Water Supply and Management. Water Research and Management 6: 3–12.
Krammer, K., Lange-Bertalo, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig, D.. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/1 (pp. 1–876). Jena: Gustav Fischer Verlag.
Krammer, K., Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/2. Stuttgart & New York: Gustav Fischer Verlag.
Krammer, K., Lange-Bertalot, H. (1991). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 2/3. Stuttgart, Jena: Gustav Fischer Verlag.
Kurmayer, R., Deng, L. & Entfellnera, E. (2016). Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54: 69–86. DOI: 10.1016/j.hal.2016.01.004.
Lewis, W.M. & Wurtsbaugh, W.A. (2008). Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. Int. Rev. Hydrobiol. 93: 446–465. DOI: 10.1002/iroh.200811065.
Mariani, M.A., Padedda, B., Kaštovsky, J., Buscarinu, P., Sechi, N. et al. (2015). Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs. Sci. Rep. 5: 17964. DOI: 10.1038/srep17964.
Micheletti, S., Schanz, F. & Walsby, A.E. (1998). The daily integral of photosynthesis by Planktothrix rubescens during summer stratification and autumnal mixing in Lake Zürich. New Phytol. 138: 233–249.
Naselli-Flores, L. (1999). Limnological Aspects of Sicilian Reservoir: a Comparative Ecosystemic Approach. In J.G. Tundisi & M. Straškraba (Eds.), Theoretical Reservoir Ecology and its Applications (pp. 283–311). Leiden: Backhuys Publishers.
Naselli-Flores, L. (2000). Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 424: 1–11.
Naselli-Flores, L. & Barone, R. (2005). Water-level fluctuations in Mediterranean reservoirs: a dewatering treshold as a management tool to improve water quality. Hydrobiologia 548: 85–99. DOI: 10.1007/s10750-005-1149-6.
Nürnberg, G.K., LaZerte, B.D. & Olding, D.D. (2003). An Artificially induced Planktothrix rubescens surface bloom in a small kettle lake in Southern Ontario compared to blooms world-wide. Lake Reservoir Manag. 19: 307–322.
Padisák, J. (1991). Relative frequency, seasonal pattern and possible role of species rare in phytoplankton in a large shallow lake (Lake Balaton, Hungary). Verh. Internat. Verein. Limnol. 24: 989–992.
Padisák, J., Köhler, J. & Hoeg, S. (1999). The effect of changing flushing rates on development of late summer Apanizomenon and Microcystis populations in a shallow lake, Müggelsee, Berlin, Germany. In J.G. Tundisi & M. Straškraba (Eds.), Theoretical Reservoir Ecology and its Applications (pp. 411–424). Kerkwerve: Backhuys Publishers.
Padisák, J., Hajnal, E., Krienitz, L., Lakner, J. & Uveges, V. (2010). Rarity, ecological memory, rate of floral change in phytoplankton-and the mystery of the Red Cock. Hydrobiologia 653: 45–64. DOI: 10.1007/s10750-010-0344-2.
Parry, M., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. & Hanson, C.E. (Eds.) (2007). Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Pawlik-Skowrońska, B. & Toporowska, M. (2016). How to mitigate cyanobacterial blooms and cyanotoxin production in eutrophic water reservoirs? Hydrobiologia 778: 45–59.
Reynolds, C.S. (1984). The ecology of freshwater phytoplankton. Cambridge, UK: Cambridge University Press.
Reynolds, C.S. (1997). Vegetation processes in the pelagic: a model for ecosystem theory. A model for ecosystem theory. Oldendorf/Luhe, Germany: Ecology Institute.
Rimmer, A., Aota, Y., Kumagai, M. & Eckert, W. (2005). Chemical stratification in thermally stratified lakes: A chloride mass balance model. Limnol. Oceanogr. 50: 147–157.
Romo, S., Soria, J., Fernández, F., Ouahid, Y. & Barón-Solá, A. (2013). Water residence time and the dynamics of toxic cyanobacteria. Freshwater Biol. 58: 513–522. DOI: 10.1111/j.1365-2427.2012.02734.x.
Shannon, C.E. & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.
Smith, V.H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671. DOI: 10.1126/science.221.4611.669.
SRPS European Norms. (2008). Water quality-Determination of nitrogen – Determination of bound nitrogen (TNb), following oxidation to nitrogen oxides. 12260. Switzerland.
Starmach, K. (1983). Euglenophyta. In: K. Starmach & J. Sieminska (Eds.), Flora Sladkowodna Polski 3 (pp. 1–594). Warsaw–Krakow.
Suda, S., Watanabe, M.M., Otsuka, S., Mahakahant, A., Yongmanitchai, W. et al. (2002). Taxonomic revision of waterbloom – forming species of oscillatorioid cyanobacteria. Int. J. Syst. Evol. Microbiol. 52: 1577–1595. DOI: 10.1099/ijs.0.01834-0.
Sun, J. & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25: 1331–1346. DOI: 10.1093/plankt/fbg096.
Ter Braak, C.J.F. & Šmilauer, P. (2012). Canoco reference manual and user‘s guide: software for ordination, version 5.0. Ithaca. USA: Microcomputer Power.
The Jaroslav Černi Institute for the Development of Water Resources (JCI) (1971). The Vrutci dam and Reservoir - Conceptual and Main Design.
Van de Waal, D.B., Ferreruela, G., Tonk, L., Van Donk, E., Huisman, J. et al. (2010). Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii. FEMS Microbiol. Eco. l74: 430–438. DOI: 10.1111/j.1574-6941.2010.00958.x.
Van den Wyngaert, S., Salcher, M.M., Pernthaler, J., Zeder, M. & Posch, T. (2011). Quantitative dominance of seasonally persistent filamentous cyanobacteria (Planktothrix rubescens) in the microbial assemblages of a temperate lake. Limnol. Oceanogr. 56: 97–109.
Walsby, A.E., Schanz, F. & Schmid, M. (2006). The Burgundy blood phenomenon: a model of buoyancy change explains autumnal water blooms by Planktothrix rubescens in Lake Zürich. New Phytol. 169: 109–122. DOI: 10.1111/j.1469-8137.2005.01567.x.
Watson, S.B. (2003). Cyanobacterial and eukaryotic algal odor compounds: signals or by-products? A review of their biological activity. Phycologia 42: 332–350. DOI: 10.2216/i0031-8884-42-4-332.1.
Xia, R., Zhang, Y., Critto, A., Wu, J., Fan, J. et al. (2016). The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China. Sustainability 8: 229. DOI: 10.3390/su8030229.
Zotina, T., Köster, O. & Jüttner, F. (2003). Photoheterotrophy and light-dependent uptake of organic and organic nitrogenous compounds by Planktothrix rubescens under low irradiance. Freshwater Biol. 48: 1859–1872. DOI: 10.1046/j.1365-2427.2003.01134.x.

Bądź pierwszy, który skomentuje ten wpis

Dodaj komentarz