Impact of sampling techniques on the concentration of ammonia and sulfide in pore water of marine sediments

Aleksandra Brodecka-Goluch, Patrycja Siudek, Jerzy Bolałek

Paper category: Original research paper
Corresponding author: Aleksandra Brodecka-Goluch (oceabr@ug.edu.pl)
DOI: 10.2478/ohs-2019-0017
Received: 25/05/2018
Accepted: 09/11/2018
Full text: here

Citation (APA style): Brodecka-Goluch, A., Siudek, P. & Bolałek, J. (2019). Impact of sampling techniques on the concentration of ammonia and sulfide in pore water of marine sediments. Oceanological and Hydrobiological Studies, 48(2), pp. 184-195. Retrieved 3 Oct. 2019, from doi:10.1515/ohs-2019-0017

Abstract

Three ex situ pore water sampling procedures
(I – rhizon samplers, II – centrifugation of sediment subsamples collected from different sediment depths without core sectioning, III – core sectioning and centrifugation of sediment sections) were compared to indicate factors that may affect concentrations of pore water constituents (ammonia and sulfides). The methods were selected and modified in such a way as to determine how the concentrations are affected by different factors related to sampling procedures, e.g. contact with atmospheric air, filtration and sediment core disturbance. They were tested on nine sediment cores collected at one site in the southern Baltic Sea. The concentration of ammonia in pore water from centrifuged sediment sections was significantly higher compared to pore water extracted by rhizons – probably due to the impact of changing pH. The factor with the greatest impact on the H<sub>2</sub>S/HS− concentration in the analyzed pore water was the contact with atmospheric air and/or the extrusion of sediments from a core liner. Rhizons proved to be the best option for sampling pore waters analyzed for H<sub>2</sub>S/HS− and NH<sub>4+</sub>/NH<sub>3</sub>. In the case of H<sub>2</sub>S/HS− we noticed the smallest loss of the analyzed constituents. For ammonia, the centrifugation of the whole sediment sections was likely to cause interferences in the indophenol blue method.

References

Aminot, A., Kirkwood, D.S. & Keroue, R. (1997). Determination of ammonia in seawater by the indophenol-blue method: Evaluation of the ICES NUTS I/C 5 questionnaire. Marine Chemistry 56: 59–75.
Ankley, G.T. & Schubauer-Berigan, M.K. (1994). Comparison of techniques for the isolation of sediment pore water for toxicity testing. Archives of Environmental Contamination and Toxicology 27: 507–512.
Ballas, G., Garziglia, S., Sultan, N., Pelleter, E., Toucanne, S. et al. (2018). Influence of early diagenesis on geotechnical properties of clay sediments (Romania, Black Sea). Engineering Geology 240: 175–188. DOI: 10.1016/j.enggeo.2018.04.019.
Baric, A., Kuspilic, G. & Matijevic, S. (2002). Nutrient (N, P, Si) fluxes between marine sediments and water column in coastal and open Adriatic. Hydrobiologia 475–476: 151–159. DOI: 10.1023/A:1020386204869.
Bolałek J. (2010). Interstitial waters. In J. Bolałek (Ed.), Physical, biological and chemical examination of marine sediments (pp. 525–551). Gdańsk: Wyd. Univ. Gdańsk. (In Polish).
Brodecka A. (2013). Factors controlling methane occurrence in sediments of the Southern Baltic. Unpublished doctoral dissertation, University of Gdańsk, Gdańsk, Poland.
Brodecka-Goluch A. & Łukawska-Matuszewska K. (2018). Porewater dissolved organic and inorganic carbon in relation to methane occurrence in sediments of the Gdańsk Basin (southern Baltic Sea). Continental Shelf Research 168: 11–20.
Calvert, S.E. & Pedersen, T.F. (1993). Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology 113(1–2): 67–88. DOI: 10.1016/0025-3227(93)90150-T.
Chapman, P.M., Wang, F., Germano, J.D. & Batley, G. (2002). Pore water testing and analysis: the good, the bad, and the ugly. Marine Pollution Bulletin 44: 359–366.
Cline, J.D. & Richards, F.A. (1969). Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature and pH. Environ. Sci. Technol. 3(9): 838–843. DOI: 10.1021/es60032a004.
Conley, D.J., Stockenberg, A., Carman, R., Johnstone, R.W., Rahm, L. et al. (1997). Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science 45: 591–598. DOI: 10.1006/ecss.1997.0246.
Crompton, T.R. (2006). Analysis of Seawater: A Guide for the Analytical and Environmental Chemist. Springer-Verlag Berlin-Heidelberg.
Dickens, G.R., Koelling, M., Smith, D.C., Schnieders, L. & IODP Expedition (302 scientists). (2007). Rhizon sampling of pore waters on scientific drilling expeditions: an example from the IODP Expedition 302, Arctic Coring Expedition (ACEX). Sci. Drill. 4: 22–25. DOI: 10.2204/iodp.sd.4.08.2007.
Eby G.N. (2016). The marine environment. In G.N. Eby (Ed.), Principles of environmental geochemistry (pp. 387–437). Illinois: Waveland Press Inc.
Emerson, K., Russo, R.C., Lund, R.E. & Thurston, R.V. (1975). Aqueous ammonia equilibrium calculations: Effect of pH and temperature. Journal of the Fisheries Research Board of Canada 32(12): 2379–2383. DOI: 10.1139/f75-274.
Egger, M., Lenstra, W., Jong, D., Meysman, F.J.R., Sapart, C.J. et al. (2016). Rapid sediment accumulation results in high methane effluxes from coastal sediments. PLoS ONE 11(8): e0161609. DOI: 10.1371/journal.pone.0161609.
Falcão, M. & Vale, C. (1998). Sediment-water exchanges of ammonium and phosphate in intertidal and subtidal areas of a mesotidal coastal lagoon (Ria Formosa). Hydrobiologia 373: 193–201.
Fonselius, S., Dyrssen, D. & Yhlen, B. (1999). Determination of hydrogen sulphide. In K. Grasshoff, K. Kremling & M. Ehrhardt (Eds.), Methods of seawater analysis (pp. 91–100), 3rd edition. Germany: Wiley-VCH.
Friebele, E., Shimoyama, A. & Ponnamperuma, C. (1981). Adsorption of protein and non-protein amino acids on a clay mineral: A possible role of selection in chemical evolution. Journal of Molecular Evolution 16(3–4): 269–278. DOI: 10.1007/BF01804978.
Gao, M., Liu, J., Qiao, Y., Zhao, M. & Zhang X-H. (2017). Diversity and abundance of the denitrifying microbiota in the sediment of Eastern China Marginal Seas and the impact of environmental factors. Microbial Ecology 73(3): 602–615. DOI: 10.1007/s00248-016-0906-6.
Graca, B., Witek, Z., Burska, D., Białkowska, I., Łukawska-Matuszewska K. et al. (2006). Pore water phosphate and ammonia below the permanent halocline in the south-eastern Baltic Sea and their benthic fluxes under anoxic conditions. J. Marine Syst. 63(3–4): 141–154. DOI: 10.1016/j.jmarsys.2006.06.003.
Grasshoff, K., Ehrhardt, M. & Kremling, K. (1999). Methods of seawater analysis. Wiley-VCH Verlag Weinheim. DOI: 10.1002/9783527613984.
Holmer, M. & Hasler-Sheetal, H. (2014). Sulfide intrusion in seagrasses assessed by stable sulfur isotopes – a synthesis of current results. Front. Mar. Sci. 1(64): 1–11. DOI: 10.3389/fmars.2014.00064.
Ibánhez, J.S.P. & Rocha, C. (2014). Porewater Sampling for NH4+ with Rhizon Soil Moisture Samplers (SMS): Potential Artifacts induced by NH4+ Sorption. Freshwater Science 33(4): 1195–1203. DOI: 10.1086/678483.
Jilbert, T., Slomp, C.P., Gustafsson, B.G. & Boer, W. (2011). Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles. Biogeosciences 8: 1699–1720. DOI: 10.5194/bg-8-1699-2011.
Karlson, K., Hulth, S., Ringdahl, K. & Rosenberg, R. (2005). Experimental recolonization of Baltic Sea reduced sediments: survival of benthic macrofauna and effects on nutrient cycling. Marine Ecology Progress Series 294: 35–49. DOI: 10.3354/meps294035.
Knight, B.P., Chaudri, A.M., McGrath, S.P. & Giller, K.E. (1998). Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers. Environmental Pollution 99: 293–298. DOI: 10.1016/S0269-7491(98)00021-9.
Lange, G.J., Cranston, R.E., Hydes, D.H. & Boust D. (1992). Extraction of pore water from marine sediments: A review of possible artifacts with pertinent examples from the North Atlantic. Marine Geology 109: 53–76.
Lerat, Y., Lasserre, P. & Corre, P. (1990). Seasonal changes in pore water concentrations of nutrients and their diffusive fluxes at the sediment-water interface. Journal of Experimental Marine Biology and Ecology 135(2): 135–160. DOI: 10.1016/0022-0981(90)90012-2.
Łukawska-Matuszewska, K., Burska, D. & Niemirycz E. (2009). Toxicity assessment by Microtox® in sediments, pore waters and sediment saline elutriates in the Gulf of Gdańsk (Baltic Sea). Clean – Soil, Air, Water 37(7): 592–598. DOI: 10.1002/clen.200900021.
Łukawska-Matuszewska K. (2016). Contribution of non-carbonate inorganic and organic alkalinity to total measured alkalinity in pore waters in marine sediments (Gulf of Gdansk, S-E Baltic Sea). Marine Chemistry 186. DOI: 10.1016/j.marchem.2016.10.002.
Łukawska-Matuszewska, K. & Kiełczewska J. (2016). Effects of near-bottom water oxygen concentration on biogeochemical cycling of C, N and S in sediments of the Gulf of Gdansk (southern Baltic). Continental Shelf Research 117: 30–42. DOI: 10.1016/j.csr.2016.02.001.
Manheim F.T. (1974). Comparative studies on extraction of sediment interstitial waters: discussion and comment on the current state of interstitial water studies. Clays and Clay Minerals 22: 337–343.
Mintrop, L. & Duinker, J.C. (1994). Depth profiles of amino acids in porewater of sediments from the Norwegian – Greenland sea. Oceanologica Acta 17(6).
Mojski, J.E., Dadlez, R., Słowańska, B., Uścinowicz, S., Zachowicz, J. (Eds.). (1995) Geological atlas of the southern Baltic, 1:500000. (pp. 1–63). Pol. Geol. Inst., Sopot-Warszawa. (In Polish).
Mudroch, A. & Azcue, J.M. (1995). Description of equipment for pore water sampling. CRC Press.
Müller, H., Dobeneck, T., Nehmiz, W. & Hamer K. (2011). Near-surface electromagnetic, rock magnetic, and geochemical fingerprinting of submarine freshwater seepage at Eckernförde Bay (SW Baltic Sea). Geo-Mar Lett. 31: 123–140. DOI: 10.1007/s00367-010-0220-0.
Naik, R., Naqvi, S.W.A. & Araujo J. (2017). Anaerobic carbon mineralisation through sulphate reduction in the inner shelf sediments of eastern Arabian Sea. Estuaries and Coasts 40(1): 134–144. DOI: 10.1007/s12237-016-0130-0.
Rainwater, F.H. & Thatcher, L.L. (1960). Methods for collection and analysis of water samples. US Geological Survey Water Supply Paper 1454, United States Government Printing Office, Washington, 301p.
Salomons, W., de Rooij, N.M., Kerdijk, H. & Bril J. (1987). Sediments as a source for contaminants? In R. Thomas, R. Evans, A. Hamilton, M. Munawar, T. Reynoldson et al. (Eds.), Ecological Effects of In Situ Sediment Contaminants, Hydrobiologia 149 (pp. 13–30). Dordrecht: Dr W. Junk Publishers, Netherlands.
Schrum, H.N., Murray, R.W. & Gribsholt, B. (2012). Comparison of Rhizon sampling and whole round squeezing for marine sediment porewater. Sci. Drill. 13: 47–50. DOI: 10.2204/iodp.sd.13.08.2011.
Schulz, H.D. (2000). Quantification of early diagenesis: Dissolved constituents in marine pore water. In H.D Schulz & M. Zabel (Eds.) Marine geochemistry (pp. 87–122). Berlin: Springer-Verlag.
Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T. & Kölling, M. (2005). Rhizon sampling of pore waters near the sediment/water interface of aquatic systems. Limnology and oceanography: Methods 3: 361–371. DOI: 10.4319/lom.2005.3.361.
Shotbolt, L. (2010). Pore water sampling from lake and estuary sediments using Rhizon samplers. Journal of Paleolimnology 44(2): 695–700. DOI: 10.1007/s10933-008-9301-8.
Sigfusson, B., Paton, G.I. & Gislason S.R. (2006). The impact of sampling techniques on soil pore water carbon measurements of an Icelandic Histic Andosol. Science of Total Environment 369: 203–219. DOI: 10.1016/j.scitotenv.2006.01.012.
Song, J., Luo, Y.M., Zhao, Q.G. & Christie, P. (2003). Novel use of soil moisture samplers for studies on anaerobic ammonium fluxes across lake sediment–water interfaces. Chemosphere 50: 711–715. DOI: 10.1016/S0045-6535(02)00210-2.
Szczepańska, T. & Uścinowicz, S. (1994). Geochemical Atlas of the Southern Baltic. Państwowy Instytut Geologiczny, Warsaw.
Thang, N., Brüchert, V., Formolo, M., Wegener, G., Ginters, L. et al. (2012). The impact of sediment and carbon fluxes on the biogeochemistry of methane and sulfur in littoral Baltic Sea sediments (Himmerfjärden, Sweden). Estuaries and Coasts 36(1): 98–115. DOI: 10.1007/s12237-012-9557-0.
Tzollas, N.M., Zachariadis, G.A., Anthemidis, A.N. & Stratis, J.A. (2010). A new approach to indophenol blue method for determination of ammonium in geothermal waters with high mineral content. Intern. J. Environ. Anal. Chem. 90(2): 115–126.
US EPA 823-B-01-002 (2001a). Methods for collection, storage and manipulation of sediments for Chemical and Toxicological analyses. Technical manual. United States Environmental Protection Agency – Office of Water.
US EPA 600-R-01-020 (2001b). Method for assessing the chronic toxicity of marine and estuarine sediment – associated contaminants with the amphipod Leptocheirus plumulosus. Technical manual. United States Environmental Protection Agency – Office of Water. Diane Publishing.
Wu, C.S., Roy, H., de Beer, D. (2015). Methanogenesis in sediments of an intertidal sand flat in the Wadden Sea. Estuarine, Coastal and Shelf Science 164: 39–45.
Zadorojny, C., Saxton, S. & Finger, R. (1973). Spectrophotometric determination of ammonia. Journal (Water Pollution Control Federation) 45(5): 905–912.

Bądź pierwszy, który skomentuje ten wpis

Dodaj komentarz