Distribution and ecology of two interesting diatom species Navicula flandriae Van de Vijver et Mertens and Planothidium nanum Bąk, Kryk et Halabowski in rivers of Southern Poland and their spring areas

Dariusz Halabowski, Małgorzata Bąk, Iga Lewin

Paper category: Original research paper
Corresponding author: Dariusz Halabowski (dariusz.halabowski@us.edu.pl)
DOI: 10.1515/ohs-2021-0013
Received: 21/09/2020
Accepted: 15/12/2020
Full text: here

Citation (APA style): Halabowski,D.,Bąk,M. & Lewin,I.(2021).Distribution and ecology of two interesting diatom species Navicula flandriae Van de Vijver et Mertens and Planothidium nanum Bąk, Kryk et Halabowski in rivers of Southern Poland and their spring areas. Oceanological and Hydrobiological Studies,50(2) 137-149. https://doi.org/10.2478/oandhs-2021-0013

Abstract

In this paper, we report new records of rare diatoms that have recently been found in Southern Poland. Planothidium nanum was found only in the upper reaches of the Centuria River, which is not exposed to human influence, while Navicula flandriae was found in two rivers (the Bolina and the Mleczna) affected by salt mine water from hard coal mines. The impact of anthropogenic salinity on diatom communities is as yet poorly documented. Therefore, we conducted a survey on this phenomenon. We surveyed seven sampling sites for diatom assemblages and habitat characteristics, including three sampling sites impacted by mine water. Navicula flandriae was recorded at both sampling sites affected by salt mine water and in two other rivers (the Centuria and the Mitręga), indicating its wide preference for salinity. We confirmed the occurrence of P. nanum at the same site where this species was found and described in our previous paper. In addition, we recorded the occurrence of this species at two other sites in habitats with similar characteristics (lower reaches of the Centuria and Wiercica rivers). Our results indicate a more common occurrence of N. flandriae and P. nanum, which means that further monitoring of diatoms is necessary.

Conclusions

Considering the current occurrence of Navicula flandriae and Planothidium nanum, it can be expected that new sites of these species will be found in the future. Protected areas where P. nanum has been recorded play an important role in the conservation of this species. In addition, a new type of protected area in the form of a nature reserve should be considered in order to protect the entire Centuria River or at least those parts of the river that are still close to natural conditions. However, the occurrence of N. flandriae both in the highly polluted rivers and in the rivers with minimal human impact indicates a widespread distribution of this species in the flowing waters of Southern Poland. Our results reveal a paucity of research on diatoms in flowing waters, especially in Southern Poland, and we therefore call for its intensification in these types of habitats. In addition, continuous monitoring of rare diatom species and their habitats is necessary.

Acknowledgements

This research was partially supported by the University of Silesia in Katowice (Young Scientists 2018 grant and Fast Track Grants). The authors are grateful to Dr. Łukasz Peszek for his assistance with SEM micrographs. The authors are also grateful to the Head of the Regional Directorate for Environmental Protection in Katowice and the Major of the town of Łazy for their cooperation and permission to carry out the fieldwork in the “Parkowe” nature reserve (permission No. WNP.6205.8.2017.MM) and the natural monument “Zespół Źródeł rzeki Centurii zlokalizowany w miejscowości Hutki Kanki, Gmina Łazy” (“Complex of Centuria River springs located in the village of Hutki Kanki, the commune of Łazy”; permission No. WK-OŚ.604.21.2017, Resolution No. XXXIII/256/13). The authors would also like to thank the anonymous reviewers for their very valuable substantive comments that helped to improve the final version of this paper.

References

Ács, É., Szabó, K., Tóth, B. & Kiss, K.T. (2004). Investigation of benthic algal communities, especially diatoms of some Hungarian streams in connection with reference conditions of the water framework directives. Acta Bot. Hung. 46(3–4): 255–277. DOI: 10.1556/ABot.46.2004.3-4.1.
Bacher, G.L. & Garnham, J.S. (1992). The effect of salinity on several freshwater species of southern Victoria. Victoria: EPA. (EPA Report SRS 92/003).
Bąk, M. & Szlauer–Łukaszewska, A. (2012). Bioindicative potential of diatoms and ostracods in the Odra mouth environment quality assessment. Nova Hedwigia 141: 463–484.
Bąk, M., Halabowski, D., Kryk, A., Lewin, I. & Sowa A. (2020). Mining salinisation of rivers: its impact on diatom (Bacillariophyta) assemblages. Fottea 20(1): 1–16. DOI: 10.5507/fot.2019.010.
Bąk, M., Witkowski, A., Lange–Bertalot, H. & Dadał, A. (2004). Ecology of the Szczecin Lagoon diatom flora with reference to the utility of diatom indices in assessing water quality. Japanese Journal of Diatomology 20: 23–31. DOI: 10.11464/diatom1985.20.0_23.
Battarbee, R.W. (1986). Diatom analysis. In B.E. Berglund (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology (pp. 527–570). Chichester: Wiley & Sons.
Beauger, A., Voldoire, O., Mertens, A., Le Cohu, R. & Van de Vijver, B. (2015). Two new Navicula species (Bacillariophyceae) from Western Europe. Phytotaxa 230(2): 172–182. DOI: 10.11646/phytotaxa.230.2.4.
Bis, B. (2008). Assessing the Ecological Status Assessment of Freshwaters. In C. Voreadou (Ed.), Freshwater Ecosystems in Europe – An Educational Approach (pp. 56–59). Natural History Museum Of Crete, Heraklion, Greece: Selena Press.
Bodén, P. (1991). Reproducibility in the random setting method for quantitative diatom analysis. Micropaleontology 37(3): 313–319. DOI: 10.2307/1485893.
Cañedo-Argüelles, M., Kefford, B.J., Piscart, C., Prat, N., Schäfer, R.B. et al. (2013). Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 173: 157–167. DOI: 10.1016/j.envpol.2012.10.011.
Cantonati, M., Saber, A., Blanco, S., El-Refaey, A.E.A., Shehata, F.E. et al. (2016). Observations on some rarely-recorded Navicula species from Egyptian inland waters including the recently-described N. flandriae. 24th International Diatom Symposium, 21–26 August 2016 (pp. 271). Québec, Canada: Université Laval.
Čecháková, K., Matuszková, B., Válová, E., Truchlá, M., Zaoralová, M. et al. (2014). A biological survey of selected groups of plants and animals in the flooded subsidence reservoirs in Upper Silesia. Proceedings of 2nd International Conference of Water resources and wetlands, 11–13 September 2014 (pp. 152–157). Tulcea, Romania: Romanian Limnogeographical Association.
Cichoń, C. (2016). Craticula buderi (Bacillariophyceae) in Poland. Pol. Bot. J. 6(2): 301–305. DOI: 10.1515/pbj-2016-0024
Directive (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327: 1–72.
Field, C.B., Behrenfeld, M.J., Randerson, J.T. & Falkowski, P.G. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374): 237–240. DOI: 10.1126/science.281.5374.237.
Fritz, S., Juggins, S., Battarbee, R. & Engstrom, D. (1991). Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708. DOI: 10.1038/352706a0.
Furnas, M.J. (1990). In situ growth rates of marine phytoplankton: Approaches to measurement, community and species growth rates. J. Plankton Res. 12(6): 1117–1151. DOI: 10.1093/plankt/12.6.1117.
Halabowski, D. & Lewin, I. (2020). Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland). Knowl. Manag. Aquat. Ecosyst. 421: 35. DOI: 10.1051/kmae/2020026.
Halabowski, D., Lewin, I., Buczyński, P., Krodkiewska, M., Płaska, W. et al. (2020). Impact of the discharge of salinised coal mine waters on the structure of the macroinvertebrate communities in an urban river (Central Europe). Water Air Soil Pollut. 231(1): 5. DOI: 10.1007/s11270-019-4373-9.
Harat, A. & Grmela, A. (2008). Impact of mine water from the Upper Silesian Coal Basin areas on change quality of water in Olza river in years 2000–2007. Natural Environment Monitoring 9: 57–62. (In Polish).
Hauer, F.R. & Lamberti, G.A. (2007). Methods in stream ecology, Second Edition. Amsterdam–Boston–Heidelberg–London–New York–Oxford–Paris–San Diego–San Francisco–Singapore–Sydney–Tokyo: Academic Press, Elsevier. DOI: 10.1016/B978-0-12-332908-0.X5001-3.
Helios-Rybicka, R.E. (1996). Impact of mining and metallurgical industries on the environment in Poland. Appl. Geochemistry 11(1–2): 3–9. DOI: 10.1016/0883-2927(95)00083-6.
Herbert, E.R., Boon, P., Burgin, A.J., Neubauer, S.C., Franklin, R.B. et al. (2015). A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6(10): 1–43. DOI: 10.1890/ES14-00534.1.
Hermanowicz, W., Dojlido, J., Dożańska, W., Koziorowski, B. & Zerbe, J. (1999). Physical and chemical studies of water and wastewater. Warszawa: Arkady. (In Polish).
James, K., Cant, B. & Ryan, T. (2003). Response of freshwater biota to rising salinity levels and implications for saline water management: a review. Aust. J. Bot. 51(6): 703–713. DOI: 10.1071/BT02110.
Jankowski, A.T. & Rzętała, M. (2000). Silesian upland and its borders – Condition and anthropogenic changes of the surface water quality. In J. Burchard (Ed.), State and Anthropogenic Changes of Water Quality in Poland (pp. 143–154). Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
Johnson, R.K., Hering, D., Furse, M.T. & Clarke, K.E. (2006). Detection of ecological change using multiple organism groups: metrics and uncertainty. Hydrobiologia 566(1): 115–137. DOI: 10.1007/s10750-006-0101-8.
Kawecka, B. (2012). Diatom diversity in streams of the Tatra National Park (Poland) as indicator of environmental conditions. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences.
Kawecka, B. & Sanecki, J. (2003). Didymosphenia geminata in running waters of southern Poland – symptoms of change in water quality? Hydrobiologia 495: 193–201. DOI: 10.1023/A:1025469500265.
Kelly, M., King, L. & Chatháin, B.N. (2009): The conceptual basis of ecological–status assessments using diatoms. Biology and Environment: Proceedings of the Royal Irish Academy 109(3): 175–189. DOI: 10.3318/BIOE.2009.109.3.175.
Kondracki, J. (2011). Geografia regionalna Polski. Warszawa: Wydawnictwo Naukowe PWN. (In Polish).
Kwandrans, J. (1986). The structure of the diatom community in the spring sector of the stream with low pH (Biała Wisełka, Silesian Beskid, Poland). Acta Hydrobiologica 28 (1/2): 139–148.
Kwandrans, J. (2000). The benthic flora in small forest streams with different water trophy level and pH status (Pogórze Wielickie Hills, Southern Poland). Acta Hydrobiologica 42(3–4): 241–255.
Kwandrans J. (2002). Upper Vistula River: Response of aquatic communities on pollution and impoundment. IX. Benthic diatom communities. Pol. J. Ecol. 50(2): 223–236.
Kwandrans, J., Eloranta, P., Kawecka, B. & Wojtan, K. (1998). Use of benthic diatom communities to evalu-ate water quality in rivers of southern Poland. J. Appl. Phycol. 10: 193–201. DOI: 10.1023/A:1008087114256.
Kwandrans, J., Eloranta, P., Kawecka, B. & Wojtan K. (1999). Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. In J. Prygiel, B.A. Witton & J. Bukowska (Eds.), Use of algae for monitoring rivers, III (pp. 154–156). Agence de l’Eau Artois-Picardie.
Kwandrans, J. (1998). The effect of dolomite on the sessile algae communities in an acidic mountain stream (Czarna Wisełka). Studia Naturae 44: 125–143.
Kwandrans, J. (1993). Diatom communities of acidic mountain streams in Poland. Hydrobiologia 269: 335–342. DOI: 10.1007/BF00028032.
Kwandrans, J. (1989). Ecological characteristics of communities of sessile algae in the Biala and Czarna Wiseŀka streams, headwaters of the River Vistula (Silesian Beskid, southern Poland). Acta Hydrobiologica 22: 43–74.
Lewin, I., Halabowski, D. & Rymarski, Z. (2018). The first records of the occurrence of a North American invader Gammarus tigrinus Sexton, 1939 in the tributaries of the upper Vistula River. Knowl. Manag. Aquat. Ec. 419: 31. DOI: 10.1051/kmae/2018021.
Neubauer, S.C. & Craft. C.B. (2009). Global change and tidal freshwater wetlands: Scenarios and impacts, In A. Barendregt, D.F. Whigham & A.H. Baldwin (Eds.), Tidal freshwater wetlands. (pp. 253–266). Leiden: Backhuys Publishers.
Prus, P., Wiśniewolski, W. & Adamczyk, M. (2016). Monitoring of riverine ichthyofauna. Methodological guide. Warszawa: Biblioteka Monitoringu Środowiska. (In Polish).
Regulation (2019). Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 19 listopada 2019 r. sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych. Retrieved December 22, 2019, from http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190002149. (In Polish).
Saros, J.E. & Fritz, S.C. (2000). Changes in the growth rates of saline-lake diatoms in response to variation in salinity, brine type and nitrogen form. J. Plankton Res. 22(6): 1071–1083.
Sowa, A., Krodkiewska, M. & Halabowski, D. (2020). How does mining salinisation gradient affect the structure and functioning of macroinvertebrate communities? Water Air Soil Pollut. 239(9): 453. DOI: 10.1007/s11270-020-04823-4.
Strozik, G. (2017). Reduction of saline waters discharge from coal mines through filling and sealing of underground voids. World Scientific News 72: 498–512.
Vilbaste, S., Järvekülg, R., Pall, P., Piirsoo, K., Trei, T. et al. (2004). Diatom indices and stream typol-ogy in Estonia. Oceanol. Hydrobiol. St. 33: 3–10.
Wasylik, K. (1985). Diatom communities in pure polluted waters in the Biała Przemsza river basin. Acta Hydrobiologica 25/26(3/4): 287–316.
Wilk-Woźniak, E., Pociecha, A., Ciszewski, D., Aleksander-Kwaterczak, U. & Walusiak, E. (2011). Phyto- and zooplankton in fishponds contaminated with heavy metal runoff from a lead-zinc mine. Oceanol. Hydrobiol. St. 40(4): 77–85. DOI: 10.2478/s13545-011-0044-1.
Williams, W.D. (1987). Salinization of rivers and streams: an important environmental hazard. Ambio 16: 180–185.
Wojtal, A. (2004). Okrzemki (Bacilariophyceae) jako wskaźnik jakości wód źródeł Wyżyny Krakowsko-Częstochowskiej, In J. Partyka (Ed.), Zróżnicowanie i przemiany środowiska przyrodniczo-kulturowego Wyżyny Krakowsko-Częstochowskiej. Tom 1. Przyroda (pp. 165–170). Ojców: Ojcowski Park Narodowy. (In Polish).
Wojtal, A.Z. (2013). Species composition and distribution of diatom assemblages in spring waters from various geological formations in southern Poland. Bibliotheca Diatomologica 59: 1–436.
Wojtal, A.Z. & Kwandrans, J. (2006). Diatoms of the Wyżyna Krakowsko-Częstochowska Upland (S Poland)–Coscinodiscophyceae (Thalassiosirophycidae). Pol. Bot. J. 51(2): 177–207.
Wojtal, A.Z. & Sobczyk, Ł. (2012). The influence of substrates and physicochemical factors on the composition of diatom assemblages in karst springs and their applicability in water–quality assessment. Hydrobiologia 695(1): 97–108. DOI: 10.1007/s10750-012-1203-0.
Yool, A. & Tyrrell, T. (2003). Role of diatoms in regulating the ocean's silicon cycle. Global Biogeochem. Cycles. 17(4): 1103. DOI: 10.1029/2002GB002018.
Żelazna-Wieczorek, J. (2011). Diatom flora in springs of Łódź Hills (Central Poland). Diatom Monographs 13. Ruggell, Liechtenstein: A.R.G. Gantner Verlag K.G.
Zgrundo, A., Peszek, Ł. & Poradowska, A. (2018). Manual for monitoring and evaluation of river surface water bodies based on phytobenthos. Gdańsk: Główny Inspektorat Ochrony Środowiska. (In Polish).