Incidence of skeletal deformities in induced triploid rainbow trout Oncorhynchus mykiss (Walbaum, 1792)

Krzysztof Jagiełło, Marcin Polonis, Konrad Ocalewicz

Paper category: Original research paper
Corresponding author: Krzysztof Jagiełło (
DOI: 10.1515/ohs-2021-0014
Received: 08/06/2020
Accepted: 27/10/2020
Full text: here

Citation (APA style): Jagiełło,K.,Polonis,M. & Ocalewicz,K.(2021).Incidence of skeletal deformities in induced triploid rainbow trout Oncorhynchus mykiss (Walbaum, 1792). Oceanological and Hydrobiological Studies,50(2) 150-159.


Due to the cytogenetic incompatibility, triploid fish are usually infertile and are not affected by a decline in growth, survival and meat quality, which accompanies the process of sexual maturation in diploid specimens. Thus, artificial triploidization has been proposed for fish production in the case of species with early sexual maturation, such as rainbow trout. However, the use of this technique is limited by increased ratios of skeletal deformities observed in triploid specimens. The main objective of this research was to compare the proportion and variety of body abnormalities in diploid and triploid 14-month-old rainbow trout from commercial stocks, using external body shape examination, radiography and whole-mount skeletal staining. Individuals with externally observed body deformities (scoliosis, humpback, shortened tail and jaw deformities) accounted for 0.45% of the diploid stock and 3.83% of the triploid stock. X-rays and whole-mount skeletal staining of deformed individuals showed spine deformities, including compressions and fusions of vertebrae. Abnormalities observed in diploid and triploid rainbow trout examined during this study were non-lethal, however, they may negatively affect the condition of fish. Fish with skeletal deformities are not aesthetically pleasing, thus an increased ratio of such deformations in fish produced for commercial purposes may result in real economic losses.


The presented study indicates that triploid rainbow trout individuals obtained through the HHP shock exhibited more body deformities than diploids. Compared to studies on other triploid species, the deformity rate in the triploid rainbow trout examined in this study was relatively low (3.83%). The most common deformities observed in triploid individuals were vertebral compression in the pre-hemal region, resulting in the humpback phenotype, and vertebral compression in the hemal and caudal regions, resulting in shortened tails in these individuals. Although the triploid rainbow trout from the examined stock showed an increased ratio of deformed specimens, differences between triploid and diploid individuals under these conditions were small, which, given the profits related to sterility of triploid fish, makes this method efficient in the aquaculture of rainbow trout from the farm under study.


We thank Stefan Dobosz and Rafał Rożyński from the Department of Salmonid Research, Inland Fisheries Institute in Olsztyn, Rutki, for their technical assistance during the experiment.


Aegerter, S. & Jalabert, B. (2004). Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss. Aquaculture 231(1–4): 59–71. DOI: 10.1016/j.aquaculture.2003.08.019.
Alves, M.J., Coelho, M.M. & Collares-Pereira, M.J. (2001). Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111(1–3): 375–385. DOI: 10.1023/A:1013783029921.
Alves, M.J., Gromicho, M., Collares-Pereira, M.J., Crespo-López, E. & Coelho, M.M. (2004). Simultaneous production of triploid and haploid eggs by triploid Squalius alburnoides (Teleostei: Cyprinidae). J. Exp. Zoolog. Part A Comp. Exp. Biol. 301(7): 552–558. DOI: 10.1002/jez.a.51.
Arai, K. (2001). Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197(1–4): 205–228. DOI: 10.1016/S0044-8486(01)00588-9.
Arai, K. & Fujimoto, T. (2013). Genomic constitution and atypical reproduction in polyploid and unisexual lineages of the Misgurnus loach, a teleost fish. Cytogenet. Genome. Res. 140(2–4): 226–240. DOI: 10.1159/000353301.
Aussanasuwannakul, A., Kenney, P.B., Weber, G.M., Yao, J., Slider, S.D. et al. (2011). Effect of sexual maturation on growth, fillet composition, and texture of female rainbow trout (Oncorhynchus mykiss) on a high nutritional plane. Aquaculture 317(1–4): 79–88. DOI: 10.1016/j.aquaculture.2011.04.015.
Benfey, T.J. (1999). The physiology and behavior of triploid fishes. Rev. Fish. Sci. 7(1): 39–67. DOI: 10.1080/10641269991319162.
Blanc, J. M., Chourrout, D. & Krieg, F. (1987). Evaluation of juvenile rainbow trout survival and growth in half-sib families from diploid and tetraploid sires. Aquaculture 65(3–4): 215–220. DOI: 10.1016/0044-8486(87)90233-X.
Boglione C., Gisbert E., Gavaia P., Witten P.E., Moren, M. et al. (2013). Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Rev. Aquacult. 5: 121–167. DOI: 10.1111/raq.12016.
Burke, H.A., Sacobie, C.F., Lall, S.P. & Benfey, T.J. (2010). The effect of triploidy on juvenile Atlantic salmon (Salmo salar) response to varying levels of dietary phosphorus. Aquaculture 306(1–4): 295–301. DOI: 10.1016/j.aquaculture.2010.05.002.
Cherfas, N., Gomelsky, B., Ben-Dom, N. & Hulata, G. (1995). Evidence for the heritable nature of spontaneous diploidization in common carp, Cyprinus carpio L., eggs. Aquac. Res. 26(4): 289–292.
Chiasson, M.A., Pelletier, C.S. & Benfey, T.J. (2009). Triploidy and full-sib family effects on survival and growth in juvenile Arctic charr (Salvelinus alpinus). Aquaculture 289(3–4), 244–252. DOI: 10.1016/j.aquaculture.2009.01.010.
Chourrout, D., Chevassus, B., Krieg, F., Happe, A., Burger, G. et al. (1986). Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females – potential of tetraploid fish. Theor. App. Genet. 72(2): 193–206. DOI: 10.1007/BF00266992.
Cotter, D., O'Donovan, V., Drumm, A., Roche, N., Ling, E.N. et al. (2002). Comparison of freshwater and marine performances of all-female diploid and triploid Atlantic salmon (Salmo salar L.). Aquac. Res. 33(1): 43–53. DOI: 10.1046/j.1355-557X.2001.00643.x.
Dingerkus, G. & Uhler, L.D. (1977). Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technol. 52(4): 229–232. DOI: 10.3109/10520297709116780.
Dunham, R.A. (2004). Aquaculture and fisheries biotechnology: genetic approaches. Oxfordshire, UK: CABI Publishing.
Fjelldal, P.G. & Hansen, T. (2010) Vertebral deformities in triploid Atlantic salmon (Salmo salar L.) underyearling smolts. Aquaculture 309: 131–136. DOI: 10.1016/j.aquaculture.2010.09.027.
Fjelldal, P.A., Hansen, T.J., Lock, E.J., Wargelius, A., Fraser, T.W.K. et al. (2016). Increased dietary phosphorous prevents vertebral deformities in triploid Atlantic salmon (Salmo salar L.). Aquacul. Nutr. 22(1): 72–90. DOI: 10.1111/anu.12238.
Flajšhans, M., Kohlmann, K. & Rab, P. (2007). Autotriploid tench Tinca tinca (L.) larvae obtained by fertilization of eggs previously subjected to postovulatory ageing in vitro and in vivo. J. Fish Biol. 71(3): 868–876. DOI: 10.1111/j.1095-8649.2007.01557.x.
Fraser, T.W., Hansen, T., Skjæraasen, J.E., Mayer, I., Sambraus, F. et al. (2013). The effect of triploidy on the culture performance, deformity prevalence, and heart morphology in Atlantic salmon. Aquaculture 416: 255–264. DOI: 10.1016/j.aquaculture.2013.09.034.
Galbreath, P.F. & Samples B.L. (2000). Optimization of thermal shock protocols for induction of triploidy in brook trout. N. Am. J. Aquacult. 62: 249–259. DOI: 10.1577/1548-8454(2000)062<0249:OOTSPF>2.0.CO;2.
Galbreath, P.F., Jean, W.S., Anderson, V. & Thorgaard, G.H. (1994). Freshwater performance of all-female diploid and triploid Atlantic salmon. Aquaculture 128(1–2): 41–49. DOI: 10.1016/0044-8486(94)90100-7.
Gold, J.R. & Avise, J.C. (1976). Spontaneous triploidy in the California roach Hesperoleucus symmetricus (Pisces: Cyprinidae). Cytogenet. Genome Res. 17(3): 144–149. DOI: 10.1159/000130706.
Grunina, A.S., Recoubratsky, A.V., Tsvetkova, L.I. & Barmintsev, V.A. (2006). Investigation on dispermic androgenesis in sturgeon fish. The first successful production of androgenetic sturgeons with cryopreserved sperm. Int. J. Refrig. 29(3): 379–386. DOI: 10.1016/j.ijrefrig.2005.07.009.
Helland, S., Refstie, S., Espmark, Å., Hjelde, K. & Baeverfjord, G. (2005). Mineral balance and bone formation in fast-growing Atlantic salmon parr (Salmo salar) in response to dissolved metabolic carbon dioxide and restricted dietary phosphorus supply. Aquaculture 250(1–2): 364–376. DOI: 10.1016/j.aquaculture.2005.03.032.
Huergo, G.M. & Zaniboni-Filho, E. (2006). Triploidy induction in jundiá, Rhamdia quelen, through hydrostatic pressure shock. J. App. Aquaculture 18(4): 45–57. DOI: 10.1300/J028v18n04_04.
Hough, C. (2009). Improving the sustainability of European fish aquaculture by the control of malformations. FINEFISH Final Workshop, Larvi 2009 – 5th Fish & Shellfish Larviculture Symposium; 7–10 September 2009, Ghent University, Belgium.
Hulata, G. (2001). Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies. Genetica 111(1–3): 155–173. DOI: 10.1023/A:1013776931796.
Janko, K., Bohlen, J., Lamatsch, D., Flajšhans, M., Epplen, J.T. et al. (2007). The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobitis: Teleostei), and their ability to establish successful clonal lineages – on the evolution of polyploidy in asexual vertebrates. Genetica 131(2): 185–194. DOI: 10.1007/s10709-006-9130-5.
Juchno, D. & Boroń, A. (2006). Age, reproduction and fecundity of the spined loach Cobitis taenia L. (Pisces, Cobitidae) from Lake Klawój (Poland). Reprod. Biol. 6(2): 133–148.
Kendall, C., Valentino, S., Bodine, A.B. & Luer, C.A. (1994). Triploidy in a nurse Shark, Ginglymostoma cirratum. Copeia 1994(3): 825–827. DOI: 10.2307/1447205.
Leclercq, E., Taylor, J.F., Fison, D., Fjelldal, P.G., Diez-Padrisa, M. et al. (2011). Comparative seawater performance and deformity prevalence in out-of-season diploid and triploid Atlantic salmon (Salmo salar) post-smolts. Comp. Biochem. Phys. A 158(1): 116–125. DOI: 10.1016/j.cbpa.2010.09.018.
Lefevre, F., Cardinal, M., Bugeon, J., Labbe, L., Medale, F. et al. (2015). Selection for muscle fat content and triploidy affect flesh quality in pan-size rainbow trout, Oncorhynchus mykiss. Aquaculture 448: 569–577. DOI: 10.1016/j.aquaculture.2015.06.029.
Madsen, L., Arnbjerg, J. & Dalsgaard, I. (2000). Spinal deformities in triploid all-female rainbow trout (Oncorhynchus mykiss). B. Eur. Assoc. Fish Pat. 20(5): 206–208.
Morishima, K., Oshima, K., Horie, S., Fujimoto, T., Yamaha, E. et al. (2004). Clonal diploid sperm of the diploid‐triploid mosaic loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae). J. Exp. Zoolog. Part A Comp. Exp. Biol. 301(6): 502–511. DOI: 10.1002/jez.a.49.
Myers, J.M. & Hershberger, W.K. (1991). Early growth and survival of heat-shocked and tetraploid-derived triploid rainbow trout (Oncorhynchus mykiss). Aquaculture 96(2): 97–107. DOI: 10.1016/0044-8486(91)90142-T.
Ocalewicz, K. (2002). Cytogenetic markers for X chromosome in karyotype of rainbow trout from Rutki strain. Folia Biol. (Krakow) 50: 10–14.
Ocalewicz, K. & Dobosz, S. (2009). Karyotype variation in the albino rainbow trout (Oncorhynchus mykiss (Walbaum)). Genome 52(4): 347–352. DOI: 10.1139/G09-009.
Ocalewicz, K., Kuzminski, H., Pomianowski, K. & Dobosz, S. (2013). Induction of androgenetic development of the brook charr (Salvelinus fontinalis)×Arctic charr (Salvelinus alpinus) hybrids in eggs derived from the parental species. Reprod. Biol. 13: 105–112. DOI: 10.1016/j.repbio.2013.03.002.
O'Flynn, F.M., McGeachy, S.A., Friars, G.W., Benfey, T.J. & Bailey, J.K. (1997). Comparisons of cultured triploid and diploid Atlantic salmon (Salmo salar L.). ICES J. Mar. Sci. 54: 1160–1165. DOI: 10.1016/S1054-3139(97)80022-7.
Oppedal, F., Taranger, G.L. & Hansen, T. (2003). Growth performance and sexual maturation in diploid and triploid Atlantic salmon (Salmo salar L.) in seawater tanks exposed to continuous light or simulated natural photoperiod. Aquaculture 215(1–4), 145–162. DOI: 10.1016/S0044-8486(02)00223-5.
Opstad, I., Fjelldal, P.G., Karlsen, Ø., Thorsen, A., Hansen, T.J. et al. (2013). The effect of triploidization of Atlantic cod (Gadus morhua L.) on survival, growth and deformities during early life stages. Aquaculture 388: 54–59. DOI: 10.1016/j.aquaculture.2013.01.015.
Pandian, T.A. & Koteeswaran, R. (1998). Ploidy induction and sex control in fish. Hydrobiologia 384(1–3): 167–243. DOI: 10.1023/A:1003332526659.
Paschos, I., Natsis, L., Nathanailides, C., Kagalou, I. & Kolettas, E. (2001). Induction of gynogenesis and androgenesis in goldfish Carassius auratus (var. oranda). Reprod. Domest. Anim. 36(3–4), 195–198. DOI: 10.1046/j.1439-0531.2001.00285.x.
Peruzzi, S., Puvanendran, V., Riesen, G., Seim, R.R., Hagen, Ø. et al. (2018). Growth and development of skeletal anomalies in diploid and triploid Atlantic salmon (Salmo salar) fed phosphorus-rich diets with fish meal and hydrolyzed fish protein. PLoS One 13(3): e0194340. DOI: 10.1371/journal.pone.0194340.
Piferrer, F., Beaumont, A., Falguière, J.C., Flajšhans, M., Haffray, P. et al. (2009). Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293(3–4): 125–156. DOI: 10.1016/j.aquaculture.2009.04.036.
Poontawee, K., Werner, C., Müller-Belecke, A., Hörstgen-Schwark, G. & Wicke, M. (2007). Flesh qualities and muscle fiber characteristics in triploid and diploid rainbow trout. J. Appl. Ichthyol. 23(3): 273–275. DOI: 10.1111/j.1439-0426.2007.00843.x.
Preston, A.C., Taylor, J.F., Craig, B., Bozzolla, P., Penman, D.J. et al. (2013). Optimisation of triploidy induction in brown trout (Salmo trutta L.). Aquaculture 414: 160–166. DOI: 10.1016/j.aquaculture.2013.07.034.
Quillet, E., Chevassus, B. & Devaux, A. (1988). Timing and duration of hatching in gynogenetic, triploid, tetraploid, and hybrid progenies in rainbow trout. Genet. Sel. Evol. 20 (2), 199–210. DOI: 10.1186/1297-9686-20-2-199.
Rothbard, S. (2006). A review of ploidy manipulations in aquaculture: the Israeli experience. Isr. J. Aquac.-Bamidgeh 58: 266–279.
Sadler, J., Pankhurst, P.M. & King, H.R. (2001). High prevalence of skeletal deformity and reduced gill surface area in triploid Atlantic salmon (Salmo salar L.). Aquaculture 198(3–4): 369–386. DOI: 10.1016/S0044-8486(01)00508-7.
Smedley, M.A., Clokie, B.G., Migaud, H., Campbell, P., Walton, J. et al. (2016). Dietary phosphorous and protein supplementation enhances seawater growth and reduces severity of vertebral malformation in triploid Atlantic salmon (Salmo salar L.). Aquaculture 451: 357–368. DOI: 10.1016/j.aquaculture.2015.10.001.
Solar, I.I., Donaldson, E.M. & Hunter, G.A. (1984). Induction of triploidy in rainbow trout (Salmo gairdneri Richardson) by heat shock, and investigation of early growth. Aquaculture 42(1): 57–67. DOI: 10.1016/0044-8486(84)90313-2.
Strüssmann, C.A., Choon, N.B., Takashima, F. & Oshiro, T. (1993). Triploidy induction in an atherinid fish, the pejerrey (Odontesthes bonariensis). Prog. Fish-Cult. 55(2): 83–89. DOI: 10.1577/1548-8640(1993)055<0083:TIIAAF>2.3.CO;2.
Taranger, G.L., Carrillo, M., Schulz, R.W., Fontaine, P., Zanuy, S. et al. (2010). Control of puberty in farmed fish. Gen. Comp. Endocrinol. 65(3): 483–515. DOI: 10.1016/j.ygcen.2009.05.004.
Taylor, J.F., Bozzolla, P., Frenzl, B., Matthew, C., Hunter, D. et al. (2014). Triploid Atlantic salmon growth is negatively affected by communal ploidy rearing during seawater grow-out in tanks. Aquaculture 432: 163–174. DOI: 10.1016/j.aquaculture.2014.05.014.
Thorgaard, G.H. & Gall, G.A. (1979). Adult triploids in a rainbow trout family. Genetics 93(4): 961–973.
Thorgaard, G.H. (1986). Ploidy manipulation and performance. Aquaculture 57(1–4): 57–64. DOI: 10.1016/0044-8486(86)90180-8.
Ueda, T., Kobayashi, M. & Sato, R. (1986). Triploid rainbow trouts induced by polyethylene glycol. Proc. Japan Acad. Ser. B 62(5): 161–164. DOI: 10.2183/pjab.62.161.
Varadaraj, K. & Pandian, T.J. (1990). Production of all-female sterile-triploid Oreochromis mossambicus. Aquaculture 84: 117–123. DOI: 10.1016/0044-8486(90)90342-K.
Weber, G.M., Hostuttler, M.A., Cleveland, B.M. & Leeds, T.D. (2014). Growth performance comparison of intercross-triploid, induced triploid, and diploid rainbow trout. Aquaculture 433: 85–93. DOI: 10.1016/j.aquaculture.2014.06.003.
Withler, R.E., Beacham, T.D., Solar, I.I. & Donaldson, E.M. (1995). Freshwater growth, smolting, and marine survival and growth of diploid and triploid coho salmon (Oncorhynchus kisutch). Aquaculture 136(1–2): 91–107. DOI: 10.1016/0044-8486(95)01036-X.
Xiao, J., Zou, T., Chen, Y., Chen, L., Liu, S. et al. (2011). Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC genet. 12(1): 20. DOI: 10.1186/1471-2156-12-20.
Yamaha, E., Otani, S., Minami, A. & Arai, K. (2002). Dorsoventral axis perturbation in goldfish embryos caused by heat and pressure-shock treatments for chromosome set manipulation. Fish. Sci. 68(2): 313–319. DOI: 10.1046/j.1444-2906.2002.00427.x.
Zhang, Q. & Arai, K. (1999). Aberrant meioses and viable aneuploid progeny of induced triploid loach (Misgurnus anguillicaudatus) when crossed to natural tetraploids. Aquaculture 175(1–2): 63–76. DOI: 10.1016/S0044-8486(99)00035-6.
Zhou, H., Xu, Q.Z., Zhang, R., Zhuang, Z.X., Ma, Y.Q. et al. (2018). Gonadal transcriptome analysis of hybrid triploid loaches (Misgurnus anguillicaudatus) and their diploid and tetraploid parents. PLoS One 13(5): e0198179. DOI: 10.1371/journal.pone.0198179.
Zhou, L. & Gui, J. (2017). Natural and artificial polyploids in aquaculture. Aquac. Fish. 2(3): 103–111. DOI: 10.1016/j.aaf.2017.04.003.
Zhou, L., Wang, Y. & Gui, J.F. (2000). Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J. Mol. Evol. 51(5): 498–506. DOI: 10.1007/s002390010113.