Assessment of inorganic nitrogen and phosphorus compounds removal efficiency from different types of wastewater using microalgae cultures

Inna Nezbrytska, Sergii Shamanskyi, Lesia Pavliukh, Galina Kharchenko

Paper category: Original research paper
Corresponding author: Inna Nezbrytska (
Received: 13/08/2021
Accepted: 11/10/2021
Full text: here

Citation (APA style): Nezbrytska,I.,Shamanskyi,S.,Pavliukh,L. & Kharchenko,G.(2022).Assessment of inorganic nitrogen and phosphorus compounds removal efficiency from different types of wastewater using microalgae cultures. Oceanological and Hydrobiological Studies,51(1) 45-52.


The efficiency of ammonium nitrogen (N-NH4+) and phosphate (P-PO43-) removal from wastewater with different loads of these nutrients was evaluated using Chlamydomonas reinhardtii (Сhlоrорhуtа) and Oscillatoria neglecta (Суаnорhуtа/Cyanoprokaryota). In addition, functional characteristics of the microalgae under the studied conditions were determined. It was demonstrated that Ch. reinhardtii is resistant to a wide range of concentrations of inorganic nitrogen and phosphorus compounds. Microalgae actively participate in the removal of N-NH4+ from wastewater (removal efficiency of 49–63%, depending on the initial concentration). At the same time, Ch. reinhardtii showed low levels of P-PO43- removal (7–18%) from the aquatic environment. O. neglecta, unlike Ch. reinhardtii, is sensitive to excessively high concentrations of N-NH4+ (90–140 mg l-1) and P-PO43- (26–90 mg l-1). However, it is characterized by high removal efficiency for both forms of nitrogen (60–61%) and phosphorus (43–55%) at their initial concentrations of 30–50 mg l-1 and 7–14 mg l-1, respectively. Therefore, O. neglecta is best suited for use in wastewater post-treatment.


Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. PMID:24936135
Abou-Shanab, R. A. I., Ji, M.-K., Kim, H.-C., Paeng, K.-J., & Jeon, B.-H. (2013). Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. Journal of Environmental Management, 115, 257–264.
Acevedo, S., Pino, N. J. & Peñuela, G. A. (2017). Biomass production of Scenedesmus sp. and removal of nitrogen and phosphorus in domestic wastewater. Ingeniería Y Competitividad. 19 (1), 185–193.
Arsan, O.M., Davydov, O.A., Dyachenko, T.M., Yevtushenko, N. Yu., Zhukinskiy, V. M., Kyrpenko, N. I., Klenus, V. H., Kipnis, L. S., Lynnyk, P. M., Konovets, I. M., Lyashenko, A. V., Olshnyk, H. M., Pashkova, O. V., Protasov, O. O., Sylaeva, A. A., Sytnyk, Yu. M., Stoika, Yu. O., Tymchenko, V. M., Shapoval, T. M., Shevchenko, P. H., Shcherbak, V. I., Yuryshynets, V. I., Yakushyn, V.M. (2006). Metody gidroekologichnykh doslidzhen poverkhnevykh vod. (Methods of hydroecological investigations of surface waters.). Logos Press.
Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64–70.
Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425–3431.
Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable & Sustainable Energy Reviews, 19, 360–369.
Dyhrman, S. T. (2016). Nutrients and their acquisition: Phosphorus physiology in microalgae. In M. A. Borowitzka, J. Beardall & J. Raven (Eds.), The Physiology of Microalgae (pp. 155–183). Springer International Publishing.
Eladel, H., Esakkimuthu, S., & Abomohra, A. (2019). Dual role of microalgae in wastewater treatment and biodiesel production. In S. K. Gupta & F. Bux (Eds.), Application of microalgae in wastewater treatment (pp. 85–121). Springer.
European Commission. (2016). Eighth report on the implementation status and the programmes for implementation (as required by Article 17) of Council Directive 91/271/EEC concerning urban waste water treatment. COM (2016) 105.
Fernandes, T. V., Suárez-Muñoz, M., Trebuch, L. M., Verbraak, P. J., & Van de Waal, D. B. (2017). Toward an Ecologically Optimized N:P Recovery from Wastewater by Microalgae. Frontiers in Microbiology, 8, 1742. PMID:28955317
Grobbelaar, J. U. (2004). Algal Nutrition − Mineral Nutrition. In A. Richmond (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology (pp. 97–115). Blackwell Publishing Ltd.
Henze, M., Harremoës, P., Jansen, J. L. C., & Arvin, E. (2002). Wastewater treatment. Biological and chemical processes. Springer.
Jeffrey, S., & Humphrey, F. H. (1975). New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191–194.
Kong, Q. X., Li, L., Martinez, B., Chen, P., & Ruan, R. (2010). Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160(1), 9–18. PMID:19507059
Krzemińska, I., Pawlik-Skowrońska, B., Trzcińska, M., & Tys, J. (2014). Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and Biosystems Engineering, 37(4), 735–741. PMID:24037038
Lim, S. L., Chu, W. L., & Phang, S. M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, 101(19), 7314–7322. PMID:20547057
Madkour, A. G., Rasheedy, S. H., Dar, M. A., Farahat, A. Z., & Mohamed, T. A. (2017). The differential efficiency of Chlorella vulgaris and Oscillatoria sp. to treat the municipal wastewater. Journal of Biology, Agriculture and Healthcare, 7(22), 83–94.
Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 65, 186–202. PMID:25113948
Mau, L., Kant, J., Walker, R., Kuchendorf, C. M., Schrey, S. D., Roessner, U., & Watt, M. (2021). Wheat Can Access Phosphorus From Algal Biomass as Quickly and Continuously as From Mineral Fertilizer. Frontiers in Plant Science, 12, 631314. PMID:33584779
Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. The Science of the Total Environment, 752, 142168. PMID:33207512
Moudříková, Š., Nedbal, L., Solovchenko, A., & Mojzeš, P. (2017). Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. Algal Research, 23, 216–222.
Nezbritskaya, I. N., Kureyshevich, A. V., Yarovoy, A. A., Potrokhov, A. S., & Zin’kovskiy, O. G. (2019). Peculiarities of the Influence of High Concentrations of Ammonium on the Functioning of Some Species of Cyanoprokaryota, Chlorophyta, and Euglenophyta. Hydrobiological Journal, 55(2), 69–82.
Nezbritskaya, I. N., & Kureyshevich, A. V. (2015). Changes in the Content of Photosynthetic Pigments in Representatives of Chlorophyta and Cyanoprokaryota at a High Temperature. Hydrobiological Journal, 51(4), 46–56.
Parsons, T. R., & Strickland, J. D. H. (1963). Discussion of spectrophotometric determination of marineplant pigments and carotinoids. Journal of Marine Research, 21(3), 155–163.
Powell, N., Shilton, A., Pratt, S., & Chisti, Y. (2011). Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds. Water Science and Technology, 63(4), 704–709. PMID:21330717
Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424.
Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renew. Renewable & Sustainable Energy Reviews, 27, 622–653.
Renuka, N., Sood, A., Prasanna, R., & Ahluwalia, A. S. (2015). Phycoremediation of wastewaters: A synergistic approach using microalgae for bioremediation and biomass generation. International Journal of Environmental Science and Technology, 12, 1443–1460.
Rowan, K. S. (1989). Photosynthetic Pigments of Algae. Cambridge University Press.
SCOR-UNESCO. (1966). Determination of Photosynthetic Pigments. Monographs on Oceanographic Methodology 1. Paris: UNESCO.
Shamanskyi, S. I., & Boichenko, S. V. (2018). Environment-Friendly Technology of Airport’s Sewerage. In T. Karakoç, C. Colpan, & Y. Şöhret (Eds.), Advances in Sustainable Aviation (pp. 161–175). Springer.
Silva, N. F. P., Gonçalves, A. L., Moreira, F. C., Silva, T. F. C. V., Martins, F. G., Alvim-Ferraz, M. C. M., Boaventura, R. A. R., Vilar, V. J. P., & Pires, J. C. M. (2015). Towards sustainable microalgal biomass production by phycoremediation of a synthetic wastewater: A kinetic study. Algal Research, 11, 350–358.
Solovchenko, A. E., Lukyanov, A. A., Vasilieva, S. G., Savanina, Ya. V., Solovchenko, O. V., & Lobakova, E. S. (2013). Possibilities of Bioconversion of Agricultural Waste with the Use of Microalgae. Moscow University Biological Sciences Bulletin, 68(4), 206–215.
Su, Y. (2021). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. The Science of the Total Environment, 762, 144590. PMID:33360454
Thomas, D., Minj, N., Mohan, N., & Rao, P. H. (2016). Cultivation of Microalgae in Domestic Wastewater for Biofuel Applications – An Upstream Approach. Journal of Algal Biomass Utilization, 7(1), 62–70.
Zabochnicka-Świątek, M., Malinska, K., & Krzywonos, M. (2014). Removal of biogens from synthetic wastewater by microalgae. Environment Protection Engineering, 40(2), 87–104.